• Transportation Efficiencies
  • Building Innovations

How Hyperloops and Other Futuristic Innovations Could Affect Urban Mobility

May 15, 2018

With limited space on urban streets, cities will likely need to use new technology innovations to make their transportation systems more 3D. This would include the increased utilization of elevated tracks, higher usage of tunneling (beyond traditional metro systems), and flying vehicles. Hyperloops, underground automated pods, and air taxis offer both these possibilities and the potential to transform traditional transportation markets.

Hyperloops

Hyperloops hold significant potential to become the first new mode of public transport in over 100 years, promising drastically shortened intercity travel times, lower costs, and decreased negative environmental impacts. The technology uses electromagnetic propulsion to transport passengers in a capsule through a vacuum tube at speeds of up to 1,200 km/h (745 mph).

Hypothetically, hyperloop technology could transform commuting and even affect real estate prices by enabling workers to live hundreds of miles away from their offices. Nevertheless, Guidehouse Insights does not expect the currently experimental technology to approach mainstream adoption over the next 10 years. The fastest speed achieved by hyperloop pilots thus far is 387 km/h (240 mph), far off from the 1,200 km/h (745 mph) speed needed to transport passengers in the short travel times that are claimed as possible. Additionally, a myriad of technological, safety, regulatory, and business model challenges will have to be overcome for hyperloops to become a viable mass-transport technology option.

In an interesting development, Richard Branson’s Virgin Group announced an investment in Hyperloop One in late 2017 and created a new company called Virgin Hyperloop One. The strategic partnership with Virgin adds experience and credibility to the hyperloop industry. Virgin is well-known as a leading innovator in the transportation industry—primarily in the airline, cruise ship, rail, and commercial space travel industries.

Underground Automated Pods

Elon Musk’s Boring Company is attempting to develop a high speed underground public transport system using automated pods. The pods would travel on electric skates, reaching speeds of 125-150 mph and carrying between 8 and 16 passengers. The Boring Company is proposing a Washington, DC-to-Baltimore Loop, which would involve the construction of parallel, twin underground tunnels (which would eventually extend to New York City).

There are several benefits of using underground tunnels and pods in the mobility context, including the lack of weather impacts and the near unlimited number of layers of tunnels that could be built. However, tunnels are expensive to dig and projects have cost as much as $1 billion per mile. The Boring Company aims to reduce this cost by a factor of 10, which is a necessary first step if the company is to be successful.

Air Taxis

Several companies and cities are aiming to launch flying taxi services within the next 10 years (e.g., Volocopter, Kitty Hawk, and Uber).There are a number of concerns with flying taxis, including but not limited to issues related to poor weather conditions, safety, affordability, technological maturity, and the need to attain regulatory approvals from aviation regulators. It is also important to note that most predictions about the near-term deployment of flying cars have been wildly incorrect thus far. Flying taxi services will likely have a place in the future of urban mobility, though Guidehouse Insights expects unmanned flying vehicles be used for hauling commercial goods in the near-term as that is far simpler than transporting commuters.

Too Early to Tell

Due to continued urbanization, a variety of transformative technologies are needed both to improve the current state of mobility in cities and to manage the influx of additional populations. Hyperloops, underground automated pods, and air taxis are three highly experimental, futuristic innovations that have the potential to deliver on these lofty goals. The progression toward commercial deployment over the next 10 years will provide a much clearer picture around the viability (or lack thereof) for these innovative solutions.