• Plug-and-Play
  • Distributed Energy Resources
  • Energy Technologies
  • Energy Technologies
  • Virtual Power Plants

Plug-and-Play Microgrids Are Building Momentum

Feb 17, 2017

Generator

The concept of plug-and-play microgrids is picking up momentum. But like the term microgrid itself, plug-and-play means many different things.

To a software company such as Spirae, the plug-and-play concept is all about enabling software (the topic of a recent Guidehouse Insights white paper and webinar). According to Spirae, configurable microgrids and the need for standardized projects of similar scale are necessary for the microgrid market to scale up. The diversity of services a microgrid could provide hinges on flexible software configurations.

In a similar vein, Blue Pillar is marketing itself as an Internet of Things (IoT) solutions provider. It was ranked as the top company globally in terms of identified microgrid deployments in Guidehouse Insights’ Microgrid Deployment Tracker last year. The company claims it can bring a microgrid online in a matter of months thanks to its rich library of data pertaining to different types of distributed energy resources (DER).

Many Different Labels

Interestingly enough, to software companies such as Spirae and Blue Pillar, the term microgrid is too limiting for what they do. For Blue Pillar in particular, its controls platform spans smart buildings to virtual power plants (VPPs) and could also be considered simply a DER management system (DERMS) solution. As Spirae has argued, these different labels—microgrid, IoT, VPP, DERMS—really don’t matter from a software perspective. The key to unlocking value that may be hidden within DER is a shift away from complex customized engineering to a more standardized and modular approach. Think like Uber, but deliver like Comcast.

To ABB, a plug-and-play microgrid is instead a hardware offering in the form of a containerized solution. These microgrids, primarily designed for rugged, off-grid applications, can be put together like Lego blocks and reach a scale of up to 5 MW. Beyond that size, ABB admits the microgrid becomes overly complex, requiring customized engineering.

ABB is fairly unique among the long list of multinationals seeking opportunity in the microgrid space with both a distributed controls approach and a focus on off-grid projects, where the company believes the value proposition is clearest. For example, in Australia or Alaska, the business case for renewables does not depend upon renewable portfolio standards, net metering, or carbon reduction targets.

Increasing Modularity

Taking the concept of modularity in microgrids even further from a hardware perspective is startup ARDA Power, which extolls the virtues of direct current (DC) microgrids. The beauty of DC is that not only does it allow a project design to reduce power conversion devices, which simplifies design and islanding, but it is also much easier just to plug in other DC devices such as solar PV and batteries, two technologies poised to increase as a portion of the microgrid resource mix in the future.

The first company to offer a plug-and-play microgrid was Tecogen with its combined heat and power units. It recently upgraded, with the ability to plug in solar PV or batteries on a DC bus, creating a hybrid alternating current (AC)-DC microgrid. Yet another company touting a plug-and-play microgrid solution is SparkMeter, which offers low-cost but incredibly robust metering solutions for energy access solutions in the developing world. Ironically enough, one can make the argument that metering is even more important in these kilowatt-scale systems, where payment for energy services is vital for business cases.

From hardware to software, AC to DC, combined heating and power to smart meters, the plug-and-play concept appears to be all the rage in the microgrid space.