• Energy Technologies
  • Energy Technologies
  • Battery Energy Storage Systems
  • Solar Power

Distributed Energy Storage Deployments Driven by Financing Innovation, Part 1

Feb 08, 2017

This blog is the first in a two-part series that will focus on innovative financing instruments that are being applied to deploy new distributed battery energy storage applications.

The growth of solar PV has been fueled in part by lower equipment and project development costs, but also by the development of standardized power purchase agreement (PPA) contracts. Without a standardized PPA contract, each new project looked unique to investors. This type of contractual uncertainty made investors' ability to evaluate and finance projects at scale next to impossible. The introduction of standardized PPA contracts as part of The National Renewable Energy Laboratory’s multi-stakeholder Solar Access to Public Capital Working Group enhanced investor comfort levels by standardizing key contract terms and the approach to project revenue streams. These efforts resulted in the growth of an at-scale financing asset class that continues to drive solar PV technology deployment today.

Markets for the deployment of behind-the-meter (BTM) stationary battery energy storage systems (BESSs) are beginning to grow. Guidehouse Insights recently explored the development of new BTM energy storage business models and financing instruments in its recent research brief, Financing Advanced Batteries in Stationary Energy Storage. Similar to the financing benefits delivered by a standardized solar PV PPA, several new standardized contracts have emerged enabling BESS financing. One such standardized contract focused on tariff-specific demand charge savings at commercial and industrial (C&I) facilities.

Demand Charge Shared Savings Agreements

A demand charge shared savings agreement (DCSA) mimics the contractual approach employed by energy service companies (ESCOs) to finance energy efficiency projects. An ESCO uses the cost savings from energy conservation measures like lighting or heating, ventilating, and air conditioning system upgrades to repay debt and equity partners. With a DCSA, the host and a third-party energy storage system owner or operator agree contractually on how BESS and load management software will be deployed during peak energy use to reduce demand charges. The financing partners depend on a portion of the cost savings from tariff-specific demand charge reductions to be paid by the host to debt and equity partners.

Advantages and Challenges for DCSAs

Key advantages of financing distributed energy storage technology deployments using demand charge savings agreements include:

  • The deployment of a BESS with no money down by the C&I host, thus eliminating the access to capital challenge.
  • The ability to bundle O&M costs for the BESS into a single transaction, eliminating the need for the C&I host to add staff or resources to manage the system.

Key challenges of financing distributed energy storage technology deployments using demand charge savings agreement include:

  • The ability of the BESS software platform to accurately evaluate historical building load profiles and site-specific tariff requirements relative to future load to generate project revenues.
  • The effect of future changes in building load profiles and tariffs on battery deployment assumptions and project revenues.

Quantifying Complexity, Risks, and Revenue

These contractual hurdles are being addressed today, despite the complexity. Guidehouse Insights points to Green Charge Network’s commitment from Ares Capital in early 2016 for non-recourse project finance based debt funding as an example of where these issues have been sufficiently addressed, resulting in DCSA financing commitments.

Now that the ball is rolling on energy storage financing, the roadblocks facing energy storage projects don’t look so difficult. Guidehouse Insights anticipates that these types of standardized contracts will lead to the financing innovation needed to drive the deployment of stationary energy storage technology.