• Energy Technologies
  • Energy Technologies
  • Renewable Energy
  • Renewable Energy
  • Solar Power

Can Hybrid Projects Usher in the Next Generation of Renewable Energy?

Sep 16, 2016

Wind and Solar

India’s ambitious plans for renewable energy development are faced with a number of challenges. Chief among these challenges is the limited availability of land for wind and solar plants in the densely populated country, as well as the cost and technical challenges of interconnecting projects to the grid. These challenges have driven some developers and equipment manufacturers to explore hybrid renewable energy facilities, combining both wind and solar generation at a single site. This hybrid concept has been explored in other areas with limited land available for new development, most notably in Japan, where a 56 MW hybrid wind and solar project was commissioned in 2014.

Wind and solar development is often limited by the relatively high upfront costs for land acquisition, grid interconnection, and project development. The availability of grid interconnections can prohibit the development of many potential wind and solar sites, and the cost for interconnection often requires developers to build larger-than-ideal facilities. As a result, many of the optimal locations for wind and solar generation have already been developed, particularly in densely populated regions.

Hybrid Wind and Solar

The concept of a hybrid wind and solar project aims to eliminate many of the barriers to development by maximizing the value of a facility to overcome the costs for acquiring land and interconnecting to the grid compared to individual technologies. In the United States and other countries, select areas have already been set aside for renewables development. A hybrid system can allow developers to maximize the megawatts of capacity installed per each acre of available land. In addition to overcoming upfront costs, a hybrid project can take advantage of the complementary generation profiles of wind and solar. Wind is often most productive at night while solar power is naturally only generated during the day. By co-locating these generation sources at a single site, a project can more closely represent a baseload resource on the grid, facilitating easier integration and making the resource more valuable for grid operators. The improved predictability of generation output is further enhanced if an energy storage system is also combined at a single facility. This is exactly the aim of developer Windlab Ltd. for the Kennedy Energy Park it is developing in Queensland Australia. The project, scheduled to come online in 2018, will feature 30 MW of wind, 20 MW of solar PV, and 2 MW of battery energy storage capacity.

This hybrid power plant concept doesn’t stop on land, the Danish company Floating Power Plant is currently testing its hybrid wind and wave power generation platform known as Poseidon in the waters off of Northern Europe. While the concept of hybrid renewable plants holds significant potential, it will have to overcome the existing approach of both developers and utilities to typically work with only a single technology per project. However, as the industry matures and ideal sites become scarcer, the benefits of hybrid projects are likely to increase and these projects may eventually become the norm.